SHIFT-REDUCE PARSING

Consider the following grammar:

S -> aABe

A -> Abc | b

B -> d

Starting with the start symbol, the string "abde" could be generated in the following way:

start:

S -> aABe

replace the A with b:
abBe

replace the B with d:
abde

Think of this in terms of the following parse tree:

But, given a string, how would you decide if it should be accepted by a specified grammar?

For example is the string "abbcde" accepted by the above grammar?

To determine this informally, you would scan "abbcde" and try to see if anything in it matched the right hand side of a production rule. You would see that A -> b, and B -> d, and could replace one of the terminals with a non-terminal, continuing until you got the start symbol.

For simplicity, let's always choose the leftmost reduction (in this case the b). So:

abbcde

aAbcde

aAde

aABe

S

So, yes, this string is accepted by the above grammar. In general, this type of technique is called Bottom-Up Parsing because you are starting with the leaves (the bottom) of the parse tree and going up. This technique specifically is called Shift-Reduce Parsing.

Informally, a handle of a string is a substring that matches the right side of a production, and whose reduction to the nonterminal on the left side of the production represents one step along the reverse of a rightmost derivation. (If you want the formal definition, take COMP181!) So, for example, in the string "abbcde", "b" is a handle. A reduction using this handle creates "aAbcde." However, in the string "aAbcde", "b" is NOT a handle, because its reduction would create "aAAcde" which cannot reduce to S.

The parser operates by shifting zero or more input symbols onto the stack until a handle is on the top of the stack. The parser then reduces the handle to the left side of the appropriate production. This process is repeated until an error is encountered or the stack contains the start symbol, indicating success.

So, a shift-reduce parser does the following four things:

1.
In a shift action, the next input symbol is shifted onto the top of the stack.

2.
In a reduce action, the parser knows the right end of the handle is at the top of the stack. It must then locate the left end of the handle within the stack and decide with what nonterminal to replace the handle.

3.
In an accept action, the parser announces successful completion of the parsing.

4.
In an error action, the parser discovers that a syntax error has occurred.

Consider the following grammar:

E -> E + E

E -> E * E

 E -> id
 (id is a number)

How would you implement a shift-reduce parser to determine, for example, if “id + id + id” is a valid string?

A convenient way to implement a shift-reduce parser is to have a stack to hold the grammar symbols and an input string. Mark the bottom of the stack, as well as the end of the input string, with a $. (Note: In the above grammar there is no start symbol. So, consider $ a terminal. Then the accept state is when the top-most terminal on the stack is $ and the input string consists only of $.)

STACK:

INPUT:

ACTION:

$

id + id + id$

shift

$id

+ id + id$

reduce E -> id

$E

+ id + id$

shift

$E +

id + id$

shift

$E + id

+ id$

reduce E -> id

$E + E

+ id$

reduce E -> E + E

$E

+ id$

shift

$E +

id$

shift

$E + id

$

reduce E -> id

$E + E

$

reduce E -> E + E

$E

$

accept

S

a

A

B

e

d

b

