Data Structures and Algorithms, Spring 2001

Project 3 -- A Maze

Phase I

Due Date:
Monday, April 23, at the beginning of class

START EARLY!!!

You will lose 10% for each 24-hour period this is turned in late.

What to Turn In: A printout of any code you write including your makefile.

Programming Details:

1.
Create a subdirectory in your submissions directory called proj3. Put all of your code in this directory.

2.
Make the executable in your makefile called maze. To grade this program, I should be able to type: make maze at the prompt.

3.
Classes should be split into .h and .cpp files. No .h file should contain any implementation.

4.
All classes need a constructor and destructor. Your constructor will almost always contain code. Your destructor may be empty, but good style insists that it be included.

Acceptable Collaboration: As usual, you are allowed to discuss this project with your classmates. If you would like, you can work in a group of no more than 3. (Of course you can work individually or in pairs if you prefer.) If you elect to work in a group, you can turn in one copy. Everyone in the group will get the same score. Please clearly specify the directory in which the code is located. Make sure you can explain everything you turn in. (i.e., It is not acceptable for one person to do half of the programming and one person to do the other half. Everyone needs to understand all of it.)

Motivation: This phase of the project gives you the opportunity to implement disjoint sets, which is a data structure commonly used in scientific and mathematical applications.

Overview: This part of the project requires you to generate a random 16x16 maze using the algorithm presented in section 8.7 in your data structures book. You will then display your maze on the screen. Note: I should be able to run your program several times and see a different maze each time. The next phase of the project will be to implement several algorithms to solve the maze. This is a project with many subparts. No one part should be extremely time consuming, but the project as a whole is not trivial. Don't wait until the last minute!!

Background Information: Make sure you understand disjoint sets as presented in class. You do not have to do any optimizations (path compression, union-by-size, or union-by-height). In addition, you should read section 6.8 (concerning generating random numbers) in your C++ book.

Resources: I will place a file called mazeprint.cpp in ~vanbusum/public. This file contains code to display the maze on the screen. You will probably want to copy/paste this code into your maze class.

Recommended Steps:

Hint: Start with a small maze -- 4x4 for example. Once everything is working, increase your maze size.

1.
Start by making a disjoint set class (consisting of disjoint_set.h and disjoint_set.cpp). This class will consist of an array representing a disjoint set as discussed in class.

It may contain functions such as:

int find(int);

void merge(int, int); //NOTE: union is a reserved word

void dump();

2.
Write a driver to test this class. Do a couple of merges and a couple of finds to make sure things are working. Test your disjoint set class thoroughly, because it will be very hard to track down a bug here later.

3.
Write a maze class (consisting of maze.h and maze.cpp). One approach to store the maze is to create the following struct:

struct mazestruct

{ int northwall; //1 if wall is present, 0 if it is missing

 int southwall;

 int eastwall;

 int westwall;

 }

Then, a maze is: mazestruct maze[MAZESIZE][MAZESIZE];

(MAZESIZE is the size of one side of the maze.)

In addition, you will need: disjoint_set mazeset;

Your maze class may contain methods such as:

void dump(); //to print out the maze structures

void print(); //get this from my public directory… It displays the maze

void generate(); //generates a random maze

The general algorithm for creating the maze (Section 8.7):

Initially, all walls should be present except for:

maze[0][0].north = 0; //entrance

maze[MAZESIZE-1][MAZESIZE-1].south = 0; //exit

while (the first and last cell aren't in the same set)

{
randomly choose a cell

randomly choose a wall in that cell

//Note: generate 2 random numbers

merge both cells that are sharing that wall

mark that wall as missing in both cells

}

Note: The book suggests continuing to merge cells until all cells are in the same set. This seems to create large holes in the maze, so I don't recommend this approach.

4.
Write a driver to create the maze. (mazedrv.cpp)

Extra Credit:

For 10 points of extra credit, implement either union-by-size or union-by-height as discussed in class.

Comments/Style:

All projects in this class will be graded on style as well as correctness. I expect neatly formatted, modular, well-commented programs. State clear (and correct!) pre- and post- conditions for all functions, and include a brief description of the program near the top. Also, include a comment with your name, the date the project is due, the filename, your login, and the pledge. Print out a copy of your final project that does not have comments wrapping around to the next line.

Grading:

This phase of the project is worth 80 points:

20 points for your disjoint set class

30 points for your maze class

10 points for your makefile

20 points for style, modularity, comments, etc.

You can also get up to 10 points of extra credit on this project.

