ANOTHER OPERATOR PRECEDENCE PARSING ALGORITHM

Most of us are most comfortable dealing with mathematical expressions in infix notation. So, given an infix expression, evaluating it with the methods we have learned so far would require essentially three steps:

1. Decide whether the expression is valid.

2. Convert it to postfix notation.

3. Evaluate the expression.

It would be nice to be able to combine some of these steps, which is what this new algorithm will do.

Consider the grammar:

E -> E + E

E -> E * E

E -> id (where id is a number)

First, define three precedence relations:

· a LT b
means a “yields precedence to” b

· a EQ b
means a “has the same precedence as” b

· a GT b
means a “takes precedence over” b

Note: Do NOT think of these in terms of <, >, and =, because, for example, in some grammars,

a < b and a > b could both be true. Also, in some grammars, neither a < b, a = b, nor a > b could be true.

Then, define operator-precedence relations. For example, * is of higher precedence than +.

Consider the following table:

id
+
*
$

id
ER
GT
GT
GT

+
LT
GT
LT
GT

*
LT
GT
GT
GT

$
LT
LT
LT
ER

Read the table as “column is relation row.” For example, “+ is LT *.”

Some comments:

· An id is a number, not a single digit, so the expression id E id is an error.

· The reason + is GT + is because we are associating left to right. So 3 + 4 + 5 will be evaluated (3 + 4) + 5

· $ is less than everything because we want every operation to be done before we consider the $ which denotes the empty stack.

Consider the following expression: id + id * id$

This string with the precedence relations inserted is: $ LT id GT + LT id GT * LT id GT $

The algorithm for evaluating this expression (intuitively):

1. Scan the string left to right until the first GT is encountered.

2. Scan from that point backward until the first LT is encountered.

3. That defines the handle, so reduce.

Repeat this cycle until error or accept.

Here are a few iterations:

$ LT + LT id GT * LT id GT $

$ E + E * LT id GT $

$ E + E * E $

Ignoring the non-terminals (since they do not influence the parse), the string is now:

$ LT + LT * GT $

or

$ LT E + LT E * E GT $

Repeating the process, get:

$ LT E + E GT $

$ E $

This process may imply that you need to rescan the entire string each time you shift or reduce in order to reinsert precedence relations. That does not have to be the case.

Consider the following algorithm:

If LT or EQ holds between the topmost terminal on the stack and the next input symbol, SHIFT

else REDUCE

else ERROR

Here is the formal algorithm:

(Note: A token is a sequence of characters having a collective meaning. So, “23” is a single token, even though it consists of two characters. Also, “+”, “*”, etc. are each tokens.)

function parse

{ push $ on the stack

 get the first token, store in “token”

 repeat forever

if the topmost terminal on the stack is $ AND token is $ then

return (1); //answer is on top of stack

else

{
topterm = top-most terminal on the stack

if
(prec(topterm, token) == LT) or

(prec(topterm, token) == EQ) then
//SHIFT

{
push token onto the stack;

load the next token into “token”

}

else if (prec(top_term, token) == GT) then
//REDUCE

{

{do

pop the stack, saving the values that are popped in an array

}while((no terminals have been popped) or

 (there is not a terminal on top of the stack) or

 (prec(topterm, last-terminal-popped) != LT));

if the sequence popped is a valid right-side (of a production) then

{
do any required computation

push “E” and the computed value on the stack

}

else //was not a valid right-side

return (ERROR);

}

else //prec function must have returned ER

return (ERROR)

}

end of repeat loop;

} //end of function

