Data Structures and Algorithms, Spring 2001

Project 2 -- A Spell Checker

Due Date:
Wednesday, April 11, at the beginning of class



You will lose 10% for each 24-hour period this is turned in late.

What to Turn In: A printout of spellcheck.h, spellcheck.cpp, and your makefile. Also turn in a brief written description of your three hash functions and tell me which one you think is the best and why. In addition, create a subdirectory in your submissions directory called /spellcheck. I will check the time stamps on your program, so do not modify your program once you turn it in.

Acceptable Collaboration: You are allowed to discuss this project with your classmates, but each person should complete the project individually. Make sure that you can explain everything you turn in.

Motivation: Many spellcheckers are implemented using hashing. In addition, many other algorithms that use frequent find() operations can be sped up by using hashing. It's an important technique to master!

Overview: This project requires you to use a hash table to implement a spell checker. You will have to read in a dictionary file (which I will provide) and apply a hash function to the data in this file. Then, you will read in a text file to be checked, and list all the misspelled words in that file (or report that there are no misspellings). You will repeat this process with three different hash functions. For each function, you will have to generate some statistics about your hash table.

A sample run might look like this:

Welcome to the Spell Checker.

Which hash function would you like to use?

1. <hash function 1 here>



2. <hash function 2 here>



3. <hash function 3 here>

>1

Enter the name of the file you want checked:

>test.txt



(Continued on next page…)

Output for test.txt

JUMPE is not in the dictionary

DOGI is not in the dictionary

There are 2 misspelled words.

Statistics:

Using <hash function 1>:

The longest list in the hash table is of size 10.

There are 50 lists of length 3 or greater.

There are 5 lists of length 10 or greater.

 

Background Information: You will use a hash table as described in class, so make sure you understand the basics of hashing. In addition, you will need to learn how to deal with inputting files, so read Chapter 14 in your C++ book. It may also benefit you to review Chapter 9 in your C++ book which describes strings. 

Resources: 

1.
I have placed a file called words.txt which contains the 1000 most common English words in ~vanbusum/public. Copy it to your account. This is your dictionary file. It contains some words that are contractions (won’t, couldn’t, etc.) Your spell checker does not need to handle these words.

2.
You should create file called spellcheck.h which contains your function declarations. In addition, you should create a file called spellcheck.cpp which contains the implementations of the functions described in spellcheck.h. You will also create a makefile for compilation (more about that in class later.)

Specific Steps to Follow: 

1.
Read in the file words.txt. As you read each word, use the toupper() function to make all of the words uppercase. (Otherwise "Kelly" and "kelly" will likely not hash to the same value.)

2.
Hash these values to a table of size 1009. Use separate chaining to handle collisions. Create three different hash functions (only one of which can be in the book). Your user should be able to choose which of three hash functions to use. (Do all appropriate error checking.)

3.
Your user will input the name of a file to be checked. You should ensure this file exists. Then hash every word in this file to your table using the selected hash function. If the word is not found in the hash table, it is considered misspelled. So, for example, the word "whorlywort" is a perfectly spelled word, but I doubt it will be in your dictionary, so it is considered a misspelled word.

4.
Output all misspelled words and the total number of misspelled words. If there are no misspelled words, say so.

5.
Generate and output the following statistics:



The size of the longest list in your hash table.



The number of lists of length 3 or greater.



The number of lists of length 10 or greater.


Extra Credit: 

1. For 10 points of extra credit, make your program handle all of the contractions found in the dictionary file. (Hint: Use parsing!!)

2. For 5 points of extra credit, print out a list of suggested words for each misspelled word. These suggestions have to make sense to be accepted.  

Comments/Style: 

All projects in this class will be graded on style as well as correctness. I expect neatly formatted, modular, well-commented programs. State clear (and correct!) pre- and post- conditions for all functions, and include a brief description of the program near the top. Also, include a comment with your name, the date the project is due, the filename it is saved as, your login, and the pledge. Please try to print out a copy of your final project that does not have comments wrapping around to the next line.

Grading:


This project will be worth 130 pts:


10 points for hash functions write-up


40 points for correct implementation of hash table 


20 points for correct statistic generation


20 points for correct makefile


40 points for style, modularity, comments, etc.


You can also get up to 15 points of extra credit on this project.

