Data Structures and Algorithms, Spring 2001

Project 3 -- A Maze

Phase 2

Due Date:
Wednesday, May 2, at the beginning of class

You will lose 10% for each 24-hour period this is turned in late.

What to Turn In:
A printout of any code you write including your makefile.

Programming Details:

1.
Create a subdirectory in your submissions directory called proj3_2. Put all of your code in this directory.

2.
Make the executable in your makefile called mymaze.

3.
Classes should be split into .h and .cpp files. No .h file should contain any implementation.

4.
All classes need a constructor and destructor. Your destructor may be empty, but good style insists you include it anyway.

Acceptable Collaboration: You may discuss this project with your classmates as usual.

You may also work in groups of three or less. If you work in a group, turn in one copy of your

work. Each group member will receive the same grade. Please clearly specify the directory in

which the code is located. Make sure you can explain everything you turn in.

Motivation: This project will expose you to three different algorithms, command-line arguments,

and inheritance.

Overview: This project requires you to solve your maze using three different algorithms. The user will specify the algorithm when he executes the code. For example, typing: mymaze 1 means solve the maze with the first algorithm. Similarly, mymaze 2 solves the maze the with second algorithm. The output of your program should be a solved 16x16 maze. Also, instead of having three different functions in maze.cpp, you will have three separate classes and make the solving function virtual.

Background Information: Read the handouts on argv/argc, inheritance, and polymorphism given in class.

Resources: I will place a file called mazeprint2.cpp in ~vanbusum/public. This file contains code to display the maze on your screen. (It is only a slight modification of the function I provided for phase 1). Either copy/paste this code into your directory, or just make the necessary changes. I will also place maze2.h and maze3.h in ~vanbusum/public. Use these files for Step 8.

Description of Algorithms:

Algorithm 1: This should be a greedy algorithm, where the locally optimal move is made at each step. In this case, since the entrance of the maze in the upper-left-hand corner and the exit of the maze is in the lower-right-hand corner, always move south and east. Pseudocode for the algorithm:

Start at cell 0

While you can move either south or east

{ move south as far as you can //mark each cell you see as part of the solution

 move east as far as you can

}

Note: This approach will rarely completely solve the maze. We are implementing it for its simplicity (because sometimes it will solve smaller mazes.)

Algorithm 2: This is a backtracking algorithm. Basically, you start with a cell. If you can move south, you do. From this new cell, if you can move south, then you do. If you can't move south, then you move east. Similarly for north and west. (But you have to make sure you don't move to a place you have already been.) When you get to a cell and can't move in any direction (either because there are walls or because you have already been to neighboring cells), you back up and try again. Pseudocode for the algorithm:

Mark cell 0 as visited

Push it on the stack

current cell = 0, 0

while you haven't visited the last cell

{
if (you can move south) && (the cell to the south hasn't been visited)

{ move south //current cell is now cell that was to the south

 mark cell as visited

 push current cell on stack

}

else if (you can move east) && (the cell to the east hasn't been visited)

{ move east //current cell is now the cell that was to the east

 mark cell as visited

 push current cell on stack

}

else if… (similar for north and west)

else //you can't move in any direction

{ pop the stack

 current cell is now the cell that is on the top of the stack

}

}

//now that cells we have taken are on the stack

pop the stack until it is empty and mark all cells popped as part of the solution

Algorithm 3: This algorithm is conceptually the same as Algorithm 2. This time, however, you are not going to use a stack. Instead you will use recursion!! Pseudocode:

//let x be one index of the maze

//let y be the other index of the maze

//initially x=0 and y=0

Call the function with (x, y)

Mark cell(x, y) as visited

if (you can move south) AND (you haven't already been south) AND

 (cell(MAZESIZE-1, MAZESIZE-1) hasn't been visited)

{

 make recursive call with (x+1, y)

}

if (you can move east) AND (you haven't already been east) AND

 (cell(MAZESIZE-1, MAZESIZE-1) hasn't been visited)

{

 make recursive call with (x, y+1)

}

(similarly for north and west)

if cell(MAZESIZE-1, MAZESIZE-1) has been visited

 { mark cell as part of solution

 return;

 }

Recommended Steps:

Hint: Start with a small maze! Don't try to debug a 16x16 maze.

1.
Add two new parts to your maze struct:

int visited;
//1 if the cell has been "visited" (details later), else 0

int solution;
//1 if the cell is part of the solution, else 0

2.
Implement Algorithm 1. (At this point, don't worry about command line arguments. Just call Algorithm 1 from your maze driver.)

3.
Write a linked-list implementation of a stack class. (Note: You need to write this yourself -- using STL is not allowed.) You should be able to use part of your code from Project 1. Your stack nodes may look like:

struct mazenode

{ int x; //this is one index of your 2D maze

 int y; //this is the other index of your 2D maze

 mazenode* next;

 }

Member functions might be:

mazestack();

//constructor

~mazestack();

//destructor

void push(int x, int y);

//pushes a cell onto the stack

void pop(int& x, int& y)

//pops the top cell off the stack and returns its 2 indices

void get_top(int& x, int& y)

//gets the indices of the top cell on the stack

int isEmpty()

//returns true if stack is empty, else returns false

void dump()

//dumps the contents of the stack for debugging purposes

Note: I will not explicitly be grading the stack. (In other words, I will assume that if your maze correctly works for algorithm 2, then your stack works.) So, feel free to vary from my suggestions if something else makes more sense to you.

4.
Write a driver to test your stack. This should have nothing to do with your maze. Push and pop a couple of items to make sure everything is working. Believe me, you don't want to trace a bug down to your stack later on. (
5.
Make sure you fully understand Algorithm 2. Implement it.

6.
Make sure you fully understand Algorithm 3. Implement it.

7.
Use argv/argc to accept the algorithm number from the command line. Make sure that you do appropriate error checking.

8.
Create two subclasses: Maze2 and Maze3. But, you will no longer refer to the algorithms as "alg1", "alg2", and "alg3." Now, just have a function called "alg." Your base class will contain the implementation of what used to be "alg 1", Maze2 will contain the implementation of what used to be "alg2" and Maze3 will contain the implementation of what used to be "alg3." The algorithm used to solve the maze will depend upon the class instantiated.

A.
Create two new classes called Maze2 and Maze3. They will inherit everything from Maze. I have put a copy of maze2.h and maze3.h in ~vanbusum/public. Copy them to your account. Then create maze2.cpp and maze3.cpp, basically by cutting/pasting the appropriate algorithms from maze.cpp.

B.
Update your makefile to contain the two new classes.

C.
maze.cpp should no longer have a call to three separate algs. Now it should just have a call to alg() (which is the implementation of alg1). Declare this by saying:

virtual void alg();

You will also need to change the "private:" section to "protected:" in maze.h

D.
In your driver:

#include "maze.h"

#include "maze2.h"

#include "maze3.h"

E.
To instantiate the correct maze, at the top of your driver say:

Maze* m = new Maze;

Then (pseudocode):

if the command line argument is 1

{do nothing}

if the command line argument is 2

{ delete m;

 m = new Maze2;

}

if the command line argument is 3

{ delete m;

 m = new Maze3;

}

F.
Compile and see if it works!

9.
Go out and really celebrate now! You are done with most of the work for this class!

Comments/Style:

All projects in this class will be graded on style as well as correctness. Include pre/post conditions and comments where necessary. At the top of each file explain briefly what the code in the file does and the filename. Also include a comment with your name, the pledge, and your login.

Grading:

This phase of the project is worth 85 points:

15 points for Algorithm 1

15 points for Algorithm 2

15 points for Algorithm 3

10 points for inheritance

5 points for command line arguments

5 points for your makefile

20 points for style, modularity, comments, etc.

