Course Information for Data Structures

Spring Semester, 2001

Instructor:
Kelly Van Busum

Office: 039 Sitterson Hall

Office Hours:
 I will generally meet with you anytime I am not in class. I am usually around Monday – Thursday from 9am-5pm or later. Many Fridays I will also be around. Feel free to drop by, or email me to schedule an appointment. At the start of each week I will post my schedule for the current week on my office door. The same information can be viewed electronically from the class web page, and by logging on to a UNIX system and typing finger vanbusum.

Phone: 962-1924

Email: vanbusum@cs.unc.edu
TA:

Kelly Ward

Office: 039 Sitterson Hall

Office Hours: Tuesdays, 3-4pm

Wednesdays, 3-4pm

Or by appointment.

Phone: 962-1890

Email: wardk@cs.unc.edu

Class Info:
This class will meet:

 Mondays and Wednesdays, 4:30 - 5:20, SN014

 Tuesdays and Thursdays, 12:30 - 1:45, SN014

 We will NOT be meeting on Fridays.

There is a class email address: cs121@cs.unc.edu. Please send all email related to COMP 121 to this account. Both Kelly and I will be checking it regularly.

There will also be a class web page:
http://www.cs.unc.edu/~cs121
 Please check it often!

Note: You MUST be registered for COMP 121-001 (Data Strunctures) and COMP 121-401 (UNIX and OO Programming) concurrently. If you are not registered for both, you will get credit for neither!

Prerequisites:
COMP 114 is a hard prerequisite. MATH 81 is recommended but not required.

Texts:
The following two texts are required for this course:

Mark Allen Weiss, Data Structures and Algorithm Analysis in C++, Addison Wesley.

Gary Bronson, A First Book of C++ from Here to There, West Publishing Company.

Attendance:
I expect you to come to lectures on a regular basis and will generally be unwilling to answer questions about material covered in a class you missed (unless you were sick or had another legitimate excuse). You are responsible for all announcements made in class. Participation is encouraged; please feel free to stop me if you do not understand something that has been said.

Academic Integrity: I take academic integrity very seriously, and expect you to do the same. At times collaboration will be permitted and at times it will not. In general, you may discuss homework problems and projects with others (and in fact I encourage this), but you should not copy any other student’s work nor permit your work to be copied by others.

Examples of allowed collaboration:

Discussing the requirements of a project (for clarification)

Helping another student debug

Discussing material covered in class

Discussing general concepts related to a project

Examples of prohibited collaboration:

Copying another person’s code or answers

Copying code from the internet

When doing group work, having Person A do questions 1-3 and Person B

do questions 4-6

Discussing specific design issues related to a project

The above lists are not exhaustive. The key idea here is that you should understand all of the work you turn in and you should be able to replicate it on your own. If you do not feel you can replicate the work independently, then it is not fair to submit it as your own. Furthermore, if at any time, you are not sure of what constitutes “appropriate” collaboration, it is your responsibility to clarify it with me.

Course Goals and Requirements: The primary goal of this course is for students to learn about some classical data structures and algorithms that are central to Computer Science. Students will also learn to select appropriate abstract data types, physical data structures, and algorithms to solve particular problems.

While this course is taught using the C++ language (in a UNIX environment) as a vehicle for illustrating (and practicing with) many of the data structures and algorithms we will study, this is not primarily a programming course. Students will gain familiarity with the UNIX environment and will learn principles or object-oriented programming throughout the course, but this should be considered secondary to the underlying data structures and algorithms.

Grading:

Projects: There will be three major projects. Each will be worth 15% of your final grade.

Exams: There will be two hour-long exams. Each will be worth 10% of your final grade. In addition, there will be a final exam, worth 15% of your final grade.

Homework/Quizzes: We will have several quizzes in class, mostly toward the beginning of the semester. These quizzes will be announced. In addition, you will regularly have short (several day) homework assignments. Homework and quizzes will be worth 20% of your final grade.

In-class Assignments: We will often have work that is completed during the class period. While these assignments will not be formally graded, I will record them as completed (or not). These assignments will be used to decide whether to raise a borderline grade.

Grading Scale: The following scale will be used to computer your final grades: A (93-100), A- (90-92), B+ (88-89), B (83-87), B- (80-82), C+ (78-79), C (73-77), C- (70-72), D+ (68-69), D (60-67), F (0-59). In addition, you MUST have a passing average in each grading category (Exams, Projects, and Homework/Quizzes) to pass this class. At my discretion I can raise a borderline grade, but I will never lower a grade.

Late Assignments: Unless you have a previously approved excuse, the submission of late assignments is strongly discouraged. Projects submitted late will be penalized 10% for each 24-period it is turned in late (including weekends). Minor homework will be accepted one day late for partial credit.

Extra Credit: To receive extra credit in this class, you must develop your own “project” somehow relating to the course material. This can be, but is not limited to, a program, research project, or presentation. Submit to me in writing a description of your project. Points awarded will count in the Homework/Quizzes section. Let your creativity reign!

Important Dates:

Exam 1: Tuesday, February 13

Last Day to Withdraw: Monday, February 19

Exam 2: Thursday, March 22

Last Day for Extra Credit Projects: Tuesday, April 24

Final Exam: Thursday, May 10, 8:00am

Project due dates TBD.

Special Needs: If you need special accommodation for any reason, I will make every reasonable attempt to meet your needs. However, it is your responsibility to discuss this with me in the first few days of class.

Tentative Course Schedule (subject to change):

Review and Transition: Concept of an abstract data type, implementation and analysis of lists, stacks, and queues, learning C++, dynamic memory, balancing symbols algorithm, operator precedence parsing, Chomsky Normal Form.

Binary Trees: Definitions and properties, full binary tree theorem, traversals, binary tree implementations (array and pointer), recursive tree algorithms, Huffman’s Algorithm, expression trees.

General Trees: Definitions and terminology, traversals, implementations

Data Structures for Searching: Simple methods (bit vectors, unordered lists, ordered lists, self-organizing lists, binary search tree definition and properties, hash tables (open and closed), balanced trees.

Special Purpose Data Structures: Heaps and priority queues, Merge-find-sets, tries, dual data structures.

Graphs: Terminology and representations, implementations, minimum cost spanning trees and Kruskal’s Algorithm, Introduction to NP-Completeness and approximation algorithms, Coping with NP-Complete Problems (traveling salesman, maximum independent set, bin packing), graph traversals, shortest path algorithms.

Sorting: Review and analysis of simple sorts, Treesort, Quicksort, Mergesort, Heapsort, Bin Sort, Radix Sort.

Throughout the course, various C++ and UNIX topics will be interleaved as appropriate.
